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Plastic design methods for steel-framed structures involve an assumption that members do not
become unstable prior to the development of sufficient hinges to form a mechanism. Some check
on this assumption is desirable and a basic problem is that of a member subjected to combined
axial stress and unequal major-axis bending moments at its ends; the question is then whether the
full plastic moment can be developed at one end without prior instability. In previous theories,
Horne has tackled this problem indirectly by considering an ‘equivalent’ problem in which the
major-axis bending moment is uniform along the member. The actual loading problem is now
analysed directly and a criterion of critical slenderness ratio is developed which can be linked to
physically plausible causes of instability. The theory is in reasonable agreement with relevant
published experimental data except in one instance; but the data are very limited and many more
are needed before any theory can be verified or disproved with confidence.
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70 E. N. FOX
NorATION
a, coefficient in eigenfunction expansion of ,
a, distance of extreme fibre from the neutral axis for minor-axis bending
A’,B" constants
4 cross-sectional area of strut
b,b"  defined by equations (A 6) and (A 11) respectively
B, major flexural rigidity

B, minor flexural rigidity

B value of B, for fully elastic section

C St Venant torsional rigidity

C, value of C for fully elastic section

E Young’s modulus

11 yield stress

Sf(z)  defined by equation (6)

F function of £ tabulated by Horne (1956)

F, F,(P,M?) = 0 is eigenfunction relation for the nth buckling mode of a straight
equivalent elastic strut

H, function of { allowing for the effect of yielding on the lowest Euler critical load

H, function of { and f allowing for the effect of yielding on the critical moment for
lateral instability of an equivalent elastic strut under end moments M and fM

I,,1,,1,;,1, defined by equation (G1)

Jy, J;  Bessel functions

k, defined by equation (14)

K defined by equation (30)

[ length of strut

L, L, L, L,defined by equation (A 29)

m index in assumed forms for ¢, equations (A 19) and (A 32)

M applied major-axis bending moment at the top of the strut

M, major-axis bending moment at general section of the strut

M, minor-axis bending moment at general section of the strut

M, fully plastic moment for major-axis bending

M, moment at first yield for major-axis bending

M, critical moment for lateral instability of a uniform elastic strut subjected to end
moments M and fM

M, defined by equation (C 6)

M,, critical moment for lateral instability of a non-uniform elastic strut under end
moments M and fM

n=plfL

Y/ axial stress

p axial load

P, Euler critical load for minor-axis instability of uniform elastic strut simply supported
at its ends

i

defined by equation (C 6)
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FULL PLASTIC MOMENTS IN STRUTS 71
P, Euler critical load for minor-axis instability of non-uniform elastic strut
ry radius of gyration of section about the minor axis
S(n) — M,/ M,
u deflexion in direction of major axis
Uy initial value of  prior to any loading
u,(z) variation of # with z in nth buckling mode
v deflexion in the direction of the minor axis
z distance along the centre line of a straight strut measured from the bottom end
z=2z[l
Z, elastic major-axis section modulus
Z, elastic minor-axis section modulus
X, X, end shear reaction for case of foot clamped about minor axis
a defined by equation (37)
f ratio of applied end moments
Yy defined by equation (33)
¢ twisting rotation of section
P, twisting rotation of section in nth buckling mode
¥(z;) defined by equation (29)
Vo maximum value of ¥ for varying z,
x(z,) defined by equation (24)
Y/ defined by equation (48)
¢ value of z, for section that is just beginning to yield when M = M, at top end of strut

o defined by equation (40)

4 defined by equation (45)

Cm value of { at maximum point of curve DEF, figure 4
A defined by equation (A 20)

1. INTRODUCTION

In the plastic method of design for steel-framed structures it is assumed that the develop-
ment of plastic hinges allows redistribution of moments under increasing load until sufficient
hinges occur to cause collapse of the structure as a mechanism. The method involves an
assumption that a member does not collapse by instability prior to the formation of a plastic
hinge in it, and some check on this assumption is desirable when using the plastic design
method. Horne (1956) has derived theoretical curves for checking this assumption in
certain cases which are common in practice. The problem which he considers is that of
a uniform strut with both ends completely restrained against twisting and both ends
simply-supported about the major and minor axes; the strut is subjected to an axial stress
p together with end moments about the major axis, M at one end and M at the other end,
where —1 < f < 1; the extreme case f = 1 corresponds to uniform bending about the
major axis, while the other extreme case f = —1 corresponds to bending about the major
axis with equal double curvature. Then, for a given strut section and given p, f, Horne’s
final curves determine the limiting slenderness-ratio //r, such that the fully plastic moment
M = M, can be developed without instability for all smaller slenderness ratios. In this
problem, instability prior to M = M, in a test with monotonically increasing loads will

9-2
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72 E. N. FOX

correspond to the attainment of a state of maximum loading, followed by sudden collapse
under dead loading or followed by increasing deformation under decreasing load if the
loading is strain controlled.

Horne assumes in his analysis that the behaviour of the strut under the loading p, M and
fM, is the same as that of the strut subjected to an axial stress p and a uniform major-axis
bending moment M/,/F, where F'is a function of / determined by the condition that when
/= 0 and the strut remains elastic, the critical moment is the same for the two types of
loading. His criterion for the limiting slenderness ratio is then that the yield stress is just
attained at mid-span for this equivalent uniform moment problem. The chief objection to
these assumptions is that no clear physical picture can then be obtained of what Horne’s
criterion means in terms of the behaviour of the strut under the actual loading by p and
end moments M and fM. Also, his assumptions lead to the conclusion that there is a whole
range of loading combinations of p and f, such that no strut, however short, can develop the
full plastic moment; this range corresponds to combinations of axial stress p and uniform
moment M/,/F which would cause yield for M < M, even for a perfectly straight strut.
The exclusion of such cases errs on the safe side but can be unduly restrictive in practice.
Recently, Horne (1964 a,b) has presented a modified theory which, in particular, avoids the
second of the preceding objections by including an overriding criterion which implies that
sufficiently short struts can develop the full plastic moment for all combinations of £ and p.
But the modified main theory is still based on the equivalent moment case as in the earlier
theory, and it is therefore still open to the preceding objection that it has no clear interpre-
tation in terms of the physics of the actual loading case. The present analysis has been
developed to overcome both the preceding objections to Horne’s earlier theory. It refers
throughout to the actual loading by an axial stress p and end moments M and fM,
and a criterion of critical slenderness ratio is linked to physically plausible causes of
instability.

Before commencing the analysis, certain general assumptions will be stated. First, in so
far as the deformation of the strut depends on the loading, it will be assumed that at any
stage of loading the deformation depends only on the values of p, M and fM and not on
the particular manner or order in which these loads are applied. This seems a reasonable
assumption provided all loads have been increased monotonically from zero up to this
stage. On this basis, it will suffice to consider a particular order of loading and, for all
further discussion, it will be assumed that the final axial load is first applied, followed by
end moments M and fM, with § constant and M increasing steadily from zero. For brevity,
this procedure will be referred to as standard loading, and the end subjected to the larger
moment M will be called the fop end.

For standard loading on struts of the same section which collapse before M = M, it will
be assumed that the collapse value of M will decrease monotonically as the strut length
increases. It then follows that there will be a critical length such that all shorter lengths
will develop the full plastic moment, while all longer lengths will collapse prior to M — M,
The determination of this critical length, or equally the equivalent critical slenderness-
ratio, is the ultimate objective of the analysis.

Warping rigidity will be neglected; this is expected to introduce an error on the safe side.
The Wagner effect will also be neglected ; this errs on the unsafe side but the error is likely
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FULL PLASTIC MOMENTS IN STRUTS 73

to be small and less than the safe error due to neglect of warping rigidity over the range of
the later numerical calculations.

The effect of yield on lateral stability will be considered in terms of a related reduction
in the minor flexural rigidity B, as discussed quantitatively in a later section. Here we note
only that the equations of equilibrium for the yielding strut at a given stage of yielding will
then be the same as those for an elastic strut of non-uniform rigidity. Such a strut, differing
from the actual strut in that its rigidities will be assumed constant independent of load, will
be termed an equivalent elastic strut. The deformation of the equivalent elastic strut will
coincide with that of the actual strut at the particular stage of loading, and an infinite set
of equivalent elastic struts is postulated to cover the change of rigidity with yielding of the
actual strut. In order to derive the basic equilibrium relation for the yielding strut, we
proceed by first considering generally the equilibrium equations for an elastic strut of
given non-uniform rigidity.

2. THE CASE OF A STRUT SIMPLY SUPPORTED ABOUT THE MINOR AXIS AT ITS ENDS
2-1. Equilibrium conditions

We consider an equivalent elastic strut for which the flexural rigidities B,, B, and the
torsional rigidity C are assumed to be known functions of the distance z along the strut and
are independent of the loading.

Both ends of the strut are assumed to be located in position, fully restrained against
twisting and simply supported about the minor axis. The initial imperfection u, is also
assumed to satisfy simply-supported end conditions. The relevant equations are

uU=1uy=0,
d2u d2u z=0 and z=]I, (1)
B = Brgz =
=0, z=0 and z=1 (2)

The strut is loaded by an axial force P and by major-axis end moments, M at the top and
SM at the bottom, where —1 < § < 1. We shall assume that the major flexural rigidity B,
is large compared to the minor flexural rigidity B, so that, in particular, we shall neglect
the term Py in the bending moment about the major axis. The equations of equilibrium are
easily derived from statics and geometry in a manner analogous to that used, for example,
by Timoshenko & Gere (1961) for the simpler problem of uniform moment, and we find

d%

B, Y=~ Mf(2), (3)

B, () +Pu = —Mf(2), (4

() = I, (5)

where f@)=2+p(1-3). (6)

Equations (4) and (5) together with the end conditions (1) and (2) suffice to specify
completely the analytical problem of determining « and ¢ when By, C and u, are known
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74 E. N. FOX
functions of z. Further, we can eliminate ¢ from (4) and (5) to obtain the following
equation for u d . drB /du & P &

S ol | D (T Q) U 2 au __

EAE: [ ) (dzz dzz) + f(z)] +M(2) 355 =0, (7)

which is of the fourth order in #, with the four corresponding end conditions given in (1).

We proceed by considering first the special case of an initially straight strut, u, = 0, for
which we know the problem to be of eigenvalue type with an infinite set of buckling modes.
For any typical mode we write u = «,(z), ¢ = ¢,(z), #, = 0 whence from equation (7) we

obtain

d .dr[ B, d%, Pu, o d2u,

'l & fz;)]*Mf(Z)&f*O’ (8)
which has associated end conditions

u, = Byd%u,/dz? =0, z=0 and z=1[ (9)

while from equation (4) we find
By(d?u,[dz%) + Pu, = — ¢, Mf(2). (10)

Now, for a given value of §, the typical buckling mode will correspond to a specific eigen-
relation between P and AM? which can be written generally in the form

F,(P, M?) = o,}

when U=,

(1)

There will be an infinite number of such relations and if they were plotted with P as
ordinate and M? as abscissa, we expect a series of curves of the qualitative form shown in
figure 1 for P >0. It should be noted that the eigenfunctions (,,¢,) corresponding to
points on the curve I, = 0 will in general vary for differing points on this curve. For later
use, we shall consider the set of eigenfunctions #;,u,, ... and associated ¢, d,, ... corre-
sponding to the points ¢, ¢,, ... on a radius vector in figure 1, for which the ratio P/M? is
the same; it can be shown that these eigenfunctions satisfy the orthogonal relation

1 2, 42
fOBQ%%'%ggdz:o (m =+ n). (12)

We return now to the more general case where the equivalent elastic strut has a given
initial imperfection u,. The basic equations for u are then (7) and (1), and we assume for
given f that a given state of loading (P, M?) has been reached prior to instability, this state
being represented by the point @ in figure 1.

The solution of (7) can be examined by expanding the known initial imperfection in

a series of the form ©
uO(Z) - gl anun(z) (13)

in terms of the eigenfunctions #;, «,, ... which are associated with the points @,, @,, ... where
the radius vector through @ (figure 1) cuts the curves F, = 0.

The coeflicients g, in equation (13) could be determined by using the orthogonal
relation (12) in the usual manner. But we shall not make use of this process since initial
imperfections are never known with precision in practice and it is simpler to make direct
assumptions for the magnitudes of the coeflicients a,,.
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FULL PLASTIG MOMENTS IN STRUTS 75

To solve equation (7), we now expand u in the series

u= 3 kay(2), (14)

where the coefficient multipliers £, are at present unknown, and we note that (14) satisfies
the end conditions (1), since they are satisfied separately by each u,(z).

We now substitute (13) and (14) in (7) and since the equations are linear, we can seek
a solution by making the typical nth terms satisfy (7), whence we derive the equation

d%caqi fl(gf) %?5 (/c —1) <z>] (k Mz)f( >‘3fz”z =0 (15)

after dividing through by (k,—1) a,.

%,
P & 0
Qs
A%O Q.
Qi
Q
(6] M2

Ficure 1. Qualitative shape of eigenrelations.

The unknown quantity in equation (15) is £, and not u,, since u, has already been defined
as the eigenfunction corresponding to the point ¢, where the radius vector through @
(figure 1) cuts the curve F, = 0. Thus «, must satisfy the special case of equation (8) in which
(M2, P) are identified with the coordinates of ,. Now equation (15) differs only from
equation (8) in that &, P/(k,—1) replaces P, and k, M?/(k,—1) replaces M?. It follows that
equation (15) will be satisfied if £, can be chosen so that the point of coordinates
{k,M?|(k,—1), k,P/(k,—1)} in figure 1 is identified with the point @,, noting that (A2, P)
are the coordinates of the point . But the ratio of the coordinates of the point
{k, M?|(k,—1), k,P|(k,—1)} is M?|P so that this point lies on the radius vector through @,
independent of the value of £,; hence this point will coincide with @,, and equation (15)
will be satisfied, if we make it lie also on the curve F, = 0, which gives the equation

k,P k, M?

E, FoT k —|=0 (16)
from which £, can be determined for any given (M?, P), assuming the function F, to be
known.

It is interesting to note that equation (16) has a simple geometrical interpretation in
figure 1. It means that if both the coordinates of ¢ are increased by the same factor
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76 E. N. FOX

ky/(k,—1), the resulting point will lie on the curve F; = 0 and hence will correspond to the
point Q) , in figure 1. Thus

0Q, &
oQ k-1 (17)
0Q
h k= L
whence 17 0Q,

Similarly, £, = OQ,/QQ , and so on for higher values of #.

In practice, instability will always occur in the lowest mode and the conditions immedi-
ately prior to collapse will correspond to QQ , small, with %, large while £,, %, ... are of
order unity. Also, in practice, the initial imperfection will usually involve a fundamental
mode component of at least the same order of magnitude as the higher components in (13).
Hence near collapse where £, is large, it is in general a reasonable approximation to assume
that the lowest mode is dominant and to neglect the higher modes. Adopting this approxi-
mation, the basic results for further analysis are

u = kyuy = kya,u,(z),

kP kM7 (18)
A ki —17k—1 =0

where u; and /| correspond to the lowest buckling mode of the straight equivalent elastic
strut.

To make further progress, we need to specify the form of the function ¥, but the exact
form, even if it could be found, is likely to be much too complex for use in the subsequent
analysis. Instead we shall use the approximate form

2
_I%—{——A% =1, (19}
where P, is the lowest critical load when M = 0, while M, is the lowest critical moment
for P = 0. Itisshown in appendix C that (19) is a safe approximation to the true relation
F, = 0. Further, an exact solution obtained by Horne (1954) for the case of a uniform
elastic strut indicates that (19) is quite a close approximation for # = 0 in this case.

Since the analysis is to be used for the yielding strut, it is convenient to express P;, and
M, in terms of their values P, M, for the actual strut while fully elastic prior to any yield.
Then, since the effect of yielding will be to reduce the rigidity and hence the values of
Py, My, we allow for this by writing equation (19) in the form

P M?
2 THMm T (20)
where the factors H,, H,, are both < 1, and are considered in detail in appendix A.

Equation (20) is the assumed form for the relation F, = 0 and hence equation (18) for

the initially curved strut leads to

h-l_ P M
ky  HF, HyMj

(21)

as the expression for determining £;,. Here, P, is the usual Euler buckling load, while A,
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FULL PLASTIC MOMENTS IN STRUTS 77

is the buckling moment when there is no axial load, both referring to the uniform elastic
strut prior to any yield. Thus, if we now introduce Horne’s symbol 7, we can write

22T
Co="1
m2B, wlEAr?
B=—pt= 5, » (22)
, mF(f)B,C, n?F(f) EZ2 Tr?
M3 =t = = ,

where values of the numerical factor F have been tabulated by Horne (1956).

The quantities H,, H, in equation (21) allow for the effect of decreasing rigidity due to
yielding, with H, P, equal to the buckling load of the equivalent elastic strut when M = 0,
while M,,/H, is the buckling moment for this strut when P = 0. To determine H,, H,, we
need to know the variation of B, and C with z and we therefore proceed to consider suitable
assumptions for the effective rigidities of the strut section when it is partly plastic.

2:2. The effect of yielding on torsional and flexural rigidities

Neal (1950) has given some experimental evidence and a theoretical argument which
suggest that the torsional rigidity of a strut section is unaffected, to the first order, by
yielding under direct bending stresses. Hence we shall assume that the torsional rigidity
remains constant over the whole length of the strut throughout yielding, so that

C= CO: (23}

where C, is the full elastic value of the torsional rigidity. Recently, Massey (1963) has
produced contrary evidence to the effect that C is significantly reduced by yielding under
direct stresses. However, close examination of this evidence indicates that it is based on
relatively few experimental results and even if it is subsequently confirmed by further data,
the error in the assumption (23) should be largely covered by the simultaneous neglect of
warping rigidity in the present analysis. Hence it has not been considered worth while to
revise the present analysis and calculations, which were largely completed prior to Massey’s
publication, in order to allow for a reduction of C after yielding.

Before considering the assumptions for the effect of yielding on the value of the minor
flexural rigidity B,, the possible causes of instability will be discussed. First, we note that
the small shear stresses associated with torsion and shear force will only have a second-order
effect on the maximum principal stress. This effect will be neglected so far as the extent of
yielding at any section is concerned. This yielding will then depend on (i) the axial load P
which is the same at all sections along the strut, (ii) the major-axis bending moment
M; = Mf(z) which increases from the bottom to the top of the strut for 0 </ <1, and
(iii) the minor-axis bending moment M, which is zero at the two ends and reaches a
maximum at some internal section. Itis reasonably certain that the extent of yielding and
the associated reduction in B, will increase as any one of P, M, and M, increases. Also for
standard loading with P applied first, followed by the end moments with f# constant, then
the moment M, = Mf(z) will increase linearly with M, whereas M, would be expected to

10 Vor. 259. A.
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78 E. N. FOX

increase rather faster than linearly as M increases. On these assumptions, struts can con-
veniently be divided broadly into three categories, namely:

(a) Struts for which M, becomes sufficiently significant prior to yield so that the first
yield occurs at a section away from the top end. Insuch cases, we should expect the section
of maximum yielding and reduction in B, to move, if anything, further away from this end
as M increases after first yield.

(b) Struts for which the first yield occurs at the top end but M, becomes sufficiently
significant before M = M, for the section of maximum yielding to move away from the
top end while M is still less than M,

(¢) Struts for which the first yield occurs at the top end and M, remains small enough
for the section of maximum yielding to remain at this end up to M = M,, provided there is
no prior instability.

In the present analysis, we shall neglect any strain-hardening after yield and follow Horne
(1956) in assuming that B, is zero at any section which is fully plastic. Hence in categories
(a) and (b) above, the fully plastic moment is tending to occur away from the ends and the
strut is tending to become a mechanism for bending about the minor axis with zero lateral
stability. Hence, instability must occur prior to M = M, and there is no point in analysing
these first two categories in detail. Attention can therefore be concentrated on struts in the
third category (¢) above, subject to the introduction of some quantitative criterion to ensure
that the first two categories are excluded. Here, there seems to be no relevant experimental
data on the reduction in B, under the combined action of axial load and both major and
minor axis-bending moments. In the absence of such data we shall assume that, for a given

axial stress p, the rigidity B, decreases monotonically with increase in the quantity y
defined by

| M| | M|
ya — N—!‘— /) 5
x(z) Z,  Z, (24)
where z) = z[l

and the modulus signs denote as usual that both bending moments must be taken positively.
The quantity y is certainly the function governing the maximum stress in the elastic state
and hence governing the question of when and where first yield occurs. Its use in relation
to the reduction of B, after yielding is thought to be a safe assumption for the present
purpose, since it probably overestimates the importance of M, in relation to M, when the
section is partly plastic.

The numerical results from the present analysis will be concentrated on loading for
which # > 0 and in these cases it is reasonably certain that the curve for minor-axis bending
moment versus z is of single-curvature shape, assuming that the fundamental buckling
mode is dominant. Thus in figure 2, the qualitative variation of y with z will be of the form
of the curve OAB or OCB, where the chord OB represents the linear contribution of the
major-axis bending moment. The curve OAB then represents a case in which the maxi-
mum y, and hence the maximum reduction in B, occurs at the top end, while the curve
OCB shows this maximum occurring away from the top end. We require the condition
that y remains of the type OAB up to M = M,, which is simply

X(z) =0, z,=1, M= M, (25)
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If this relation is satisfied, the section of maximum reduction in B, will occur at the top
end for M < M, ; it remains to consider the condition for no instability before M = M), for
a strut in this category. For this purpose the following assumptions will be made:

(i) When the fully plastic moment M = M, is developed at the top end, some yielding
will have occurred throughout the upper portion of the strut, extending from the top z; = 1
to the section z, = { (say), while the lower portion 0 < z; < { remains wholly elastic.

(ii) The section z, = { is determined by the condition that it can be regarded as just
wholly elastic with a maximum longitudinal stress, due to the combined axial and bending
stresses, just equal to the yield stress f;.

X(Zx)

0] 2 1
Ficure 2. Qualitative shapes for x(z,).

(iii) When M = M,, the flexural rigidity B, varies linearly with distance along the strut
in the yielded portion, from zero value at the top end to the full elastic value B, at z; = (,

so that B,— B, (0<2, <),

1—2z (26)

B, =B, (ﬁz) <z <1).
The first assumption excludes the possibility that there are two or more distinct zones of
yielding separated by an elastic portion of strut. This seems unlikely in cases where the full
plastic moment is developed, though it may well occur for much slenderer struts which
become unstable prior to M = M,. The second assumption follows from the neglect of the
second-order effect of shear stresses on yielding. '
The third assumption, embodied in (26), is made as a simple adaptation of the corre-
sponding assumption in Horne’s analysis (1956) of the present problem. He states that it is
a safe assumption, underestimating B, for a section under the action of a given axialload
and increasing major-axis bending moment, to assume that B, decreases linearly as this
moment increases above the yield moment and becomes zero when the section is fully
plastic. Now the major-axis bending moment varies linearly along the strut and hence
Horne’s assumption would certainly lead to the form (26) if the stress due to the minor-axis
bending moment were neglected in considering yield. But in the present analysis, we wish
to take some account of the first order effect of this moment M, and physically it would be
more logical to assume some functional dependence of B, on M,. However, this would
undoubtedly lead to great complexity in the further analysis, which is scarcely warranted
in the absence of experimental data on which to base this functional dependence. Hence

10-2
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for analytical simplicity, we have chosen the assumption (26) giving B, directly in terms of
distance along the strut, with M, entering only into the determination of the length /(1 —{)
of the yielding zone.

2-3. Assumed initial curvature

The initial curvature enters the analysis in the expression for the minor-axis bending
moment M,, namely,

(27)

M,~ B (d u dzuo)

dz2 dz2)’

and since we are concerned with conditions near instability, we shall use the approximation
(18) that the fundamental mode only is of importance, so that

d?u
M?] = (k1~1)82a~£—29, (28)
where £, is given by equation (21).
We now write
%, ¥(z1)
B, 2 =K v (29)

where ¥, is the maximum value of ¥ for varying z,, so that K is the maximum value of the
left-hand side of equation (29) and depends on B, and the magnitude of the initial imperfec-
tion. For the estimation of K, we first take B, = B, as a safe assumption since B, < B, every-
where in the strut ; secondly, we assume that the greatest value of d%,/dz? is the same as that
in Horne’s analysis of the problem, whence we obtain

K = 0-00157? Ey—?ﬂ — 0-0015672EZ, (%) (30)

a’.’/

As defined in equation (29), the function ¥ (z,) is indeterminate to the extent of a multi-
plying constant, but this indeterminacy is of no importance, since ¥ affects the final results
only through the ratio ¢/¢,,. Now, from (29) and (18), the form of ¢(z,) will depend on
B,/B,, as given by equation (26) for M = M, and on the shape of the fundamental mode ;.
An exact solution for #, has not been obtainable and approximations regarding ¥ will be
necessary, but their detailed consideration is lengthy and will be deferred to appendix B.

For the immediate analysis, it suffices to assume that ¢ is a known function of z, for given
values of § and { when M = M,,.

2-4. The criterion for M = M, prior to instability (f > 0)

If the forms (23) and (26) are used for the respective rigidities C and B,, the factors H,, H,
in equations (20) and (21) can be determined as discussed in appendix A, where H, is
a function of { only while H, is a function of both { and f. These factors may therefore be
assumed known in the main analysis.

On the earlier assumptions, the section z; = { which is just yielding when M = M, will
be governed by the equation

fo=Fegieesn-01+ il @ -0, (31)

where from (28) and (29), |M,| = (k;—1) K[¢ () [¥,] (32)
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and K is given by (30). Also, from (21) with M = M, we can write
k=1 =17,/1-7,), (33)
P M,
= < 4
where W= RO T ARG (34
and we note that £, > 1 and 0 <y, <1.
We now introduce the notation
M, = (f,—p) Z,
L= D)%, )
b= P/4,

so that M; is the moment at first yield of a section subjected to an axial stress p and a bending
moment about the major axis only. Hence, from equation (31) with use of (32), (33) and
(35), we obtain

My = M pU— 0]+ K 5 (22 ) B2, (36)

The terms in equation (36) which involve the slenderness ratio /[r, are, first, K as given
by (30), and secondly 7,, which from (22) and (34) may be expressed in the form

7, = a0 ()% (87)
» L [0 1
where () = 72EH,({) +7r2F(/))) ET%,? Hy((,p)" (3

Hence, if we substitute (37) and (30) in (36) and rearrange, we find

I: 0 1 :H:ML B— €:| = 000157 2EAZ/[;}/;(,”Q (39)

For a given strut and given values of p and f, equation (39) may be regarded as giving
the value of { when the strut is in equilibrium under the axial stress p with end moments
M, and fM,. Now the value of { is necessarily restricted to sections within the strut so that
1> { >0 and this permissible range is further curtailed by the condition that IJW,?[ is
positive in equation (31), whence with use of (35) it follows that

0 < €< €0, [
where B+(1—=p)E = ML/Mp-’

Here it may be noted that { = {, gives the limit of the yielding zone when M = M, for
a straight strut, so that { < {, simply expresses the physical expectation that when there is
an initial curvature, the additional moment M, causes the yielding to extend further down
the strut than it does for the straight strut.

In order to interpret equation (39) further, it is necessary to consider qualitatively the
behaviour of struts under standard loading in those cases where the struts fail by instability
when M; < M < M, after some yielding has occurred, even though the section of maximum
yielding remains at the top end. We assume for these struts that the length of the yielding
zone increases steadily with M for M > M, and that the equilibrium curve for M against
the length of yielding zone is of the form shown by the curve ACB of figure 3. The essential
features are that M rises steadily to a single maximum value M, < M, and then decreases
steadily with no subsequent rise to a further maximum value. This behaviour agrees with

(40)
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relevant experimental data and it implies that when instability occurs prior to M == M,
the strut cannot be in equilibrium with M = M, for any permissible value of {. Further, if
we consider a series of such struts differing only in slenderness-ratio //r, under the same
standard loading conditions (i.e. the same p, §), it is reasonable to assume that the maximum
moment M, at instability will increase steadily as the slenderness ratio decreases until
a critical slenderness ratio is reached for which M, = M,. Then, for further decrease of
slenderness-ratio the fully-plastic moment will be always developed prior to instability and
there will be at least one permissible value of { for which the strut is in equilibrium with
M = M,. On this basis, the condition that M = M, can be obtained without instability
corresponds to the condition that equation (39) has one root at least for { in the permissible
range 0 < { < {,.

length of yielding zone

Ficure 3. Qualitative variation of M with increasing yielding.

Now if we consider a given standard loading (p,f) on a series of struts which differ only
in the slenderness-ratio //r,, then equation (39) is a quadratic equation for //r, and we
should expect a maximum value of //7, in the range 0 < { < {, corresponding to the critical
case M, = M, in the preceding discussion. Calculations for I-section struts, discussed later,
confirm this expectation in giving a typical curve of the form DEF in figure 4 for the variation
of/[r, with { as derived from (39), noting in advance that the calculations necessarily exclude
cases where yielding extends over the whole strut before both M —= M, and instability.
Figure 4 indicates that for stocky struts of small //r, < OF there is a single permissible value
of { when M = M,, and the value of {;—{ is then small corresponding to only a small effect
of M, in extending the yielding zone for these stocky struts. For larger values of //r,, greater
than OF but less than the maximum ordinate at E in figure 4, there are two values of { for
a given slenderness-ratio. However, it is clear physically that the decrease in { as Ifr,
increases will be a continuous process, and hence for continuity from the case of the stocky
struts, it is clear that it is the larger value of { which is relevant when there are two roots
of (39) for { in the permissible range. This larger value corresponds to a point on the portion
DE of the curve DEF in figure 4, and the remaining portion EF is shown as a broken curve
to denote that it is not physically relevant.

Summing up, equation (39) can be used to derive the portion DE of the curve DEF in
figure 4 for given values of quantities other than //r, and {; the fully-plastic moment M =M,
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FULL PLASTIC MOMENTS IN STRUTS 83

will then be attained at the top end without instability if the slenderness-ratio is less than
the critical value corresponding to the maximum point E of this curve. This maximum
value corresponds to a strut for which M = M, just at the onset of instability, and is one
estimate of the critical slenderness-ratio which is the object of the analysis. This estimate is,
however, based on the assumption that maximum yielding occurs at the top end for which
the governing equation is the inequality (25). If this is violated, the assumed form (26) for
B, is no longer reasonable since the incipient plastic hinge tends to occur away from the
top end and, as already noted, instability will then always occur before M = M,. We must
therefore consider whether (25) further restricts the slenderness-ratio.

l /ry - E

D
(0 g %

FIGURE 4. Variation of /[r, with { from equation (39).

From equation (24), putting M, = M, f(z) and using (6), (32) and (33), the inequality
(25) becomes

M, K (7 \¥Q1)
( ) Zx Zy 1 _'71/ ;ﬁm
which may be simplified by using (36) and (40) to give the relation
1+ G=09' M)y =0 (F+1). (42)
If we now assume, as in appendix B, the specific form
v(z1) = [21+4(1—2)] 2,(1 —21), (43)
the inequality (42) becomes simply
PO m+= G (44)

in which m will be a function of { and £ as discussed in appendix B. The later calculations

show that {+/m increases with { for a given £ and hence we can conveniently write the

inequality in the form (> ¢
= S51»

where ¥ (&) m~+& = o

and the value of m refers to { = {;.

If the condition (45) is now considered in relation to the earlier discussion of figure 4, we
can distinguish two categories involving different forms for the criterion of the attainment
of M = M, without instability. We use the notation (I/r,) ,, and {, to denote values at the
maximum point E of the curve DEF in figure 4, and the notation (//r,), to denote the value
of (Ir,) given by equation (39) when { = {;. The first category comprises those strut and
loading conditions such that {; < ¢, so that the inequality (45) is satisfied by the whole
portion DE of the curve DEF in figure 4. In this category the relevant criterion is

(45)
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(Ur,) < (Ifr,),,- The second category comprises conditions where {; >, so that only the
portion {; < { < {, of DE in figure 4 satisfies the inequality (45). In this category the
relevant criterion is (I/r,) < (I/r,);,. The two categories correspond to two conceivable
physical types of instability. The first type refers to conditions in which there is no tendency
for a plastic hinge to form away from the top end, and the potential instability is then
essentially similar to that of an elastic strut of the non-uniform rigidity given by (26). The
second type refers to conditions where a plastic hinge is tending to form away from the ends
before M — M, and thus form a lateral mechanism with inevitable prior instability.

The final criterion for the development of a fully plastic moment at the top end without
instability may be expressed in the form

[ [ .
c<(p) i Gst,

r
Y y'm 46
; (46)

[ ( ) .
- < - lf é > gm)
Fy s '

where equality signs correspond to the critical slenderness ratio such that instability is just
about to occur when M = M,

For the evaluation of the critical slenderness-ratio, equation (39) may be written as a
quadratic equation for //r, in the form

() +00) i =0 (47)

Yy

where «({) is defined by (38), while with use of (40),

u(O) = 00015m ('/fw(i)) (l—ﬁ)l(éo-—€)'

M,
The roots of the quadratic equation (47) for //r, will always be real and of opposite sign
since « > 0, but only the positive root is of physical significance, namely,

L_ow 2
, 5 (49)

The basic equations for determining the critical slenderness ratio are first, (49) in which
o and x are given by (38) and (48), respectively, and secondly, (45) which defines {;.
Subsidiary equations for evaluating H,, f,, and ¢ are given in appendices A and B.

Before considering the numerical evaluations for I-sections, one general restriction on
the range of validity of the calculations should be noted. Thus, the analysis involves the
assumption that part of the strut remains elastic when M = M, ; this condition corresponds
to { > 0 and from (40) it is clearly a necessary condition that {;, > 0, and hence that

B < MM, (50)

(48)

Loading conditions where f > M; /M, are not covered by the present analysis and we note
only that they are either cases of relatively high axial loading for which M; /M, is small, or
cases of nearly uniform moment where f = 1; in either case M = M, can only be attained
without instability for relatively very short struts.
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2-5. Evaluation of the critical slenderness ratio for steel T-sections (f = 0)

The values of both M, and M, depend on the axial stress and following Horne (1956)
we write n=plf, (51)

and assume that for practical I-sections,

MIf,Z, = 1-15(1—1-5n2)  (0<n< 04), (52)
M, Z, =% 1-15(1—n) (114+n) (04 <n<1),
while we note from (35) and (51) that
M Z, = 1—n. (53)
Thus the shape factor M; /M, depends only on 7 and we write
ML/Mp = §(n), (54)
l1—n
. (55)
Numerical values for S(r) are given in table 1 for n = 0(0-1)1.
TaBLE 1. VALUEs oF S(n)
n S(n) n S(n) n S(n)
0 0-870 0-4 0-687 0-8 0-663
01 0-795 05 0-680 09 0-658
0-2 0-740 0-6 0-675 1-0 0-652
0-3 0-704 0-7 0-669
Equations (48) and (38) may now be written in the forms
E (S(n) ¥(0)
= 0-00157% — ( ) s 56
e AT %)
- g B @
4O = wzm© erp men \Er) sw) 0
where from (40) and (54) & = [S(n)—p1 (1=4), (58)

and we note that the permissible range for { is 0 < { < {,. Values of {; are given in table 2.

TABLE 2. VALUES OF {,

X 0 01 0-2 0-4 06 0-8
0 0-870 0-795 0-740 0-687 0-675 0-663
0-2 0-837 0-744 0-675 0-608 0-593 0-579
0-4 0-783 0-658 0-567 0-478 0-458 0-439
0-6 0-674 0-489 0-350 0-216 0-187 0-158
0-8 0-348

The choice of shape for (z,) is considered in appendix B and we note that the choice is
such that ¥({)/#,, can be tabulated as a function of { and /. Thus equations (56) and (57)
for use in (49) involve { and the following non-dimensional parameters depending on the

loading and section properties n, B fJE, f)T. (59)

11 Vor. 259. A.
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The numerical evaluation of (I/r,),, for use in the criterion (46) involves the following
steps:

(a) Evaluation of H, as a function of {; it is independent of the parameters (59). This
evaluation is considered in appendix A with the results given in table 3 and figure 5.

TasLE 3. VALUES oF H,({) FOR STRUT WITH ENDS SIMPLY SUPPORTED
ABOUT THE MINOR AXIS

¢ H,(8) ¢ H,(§)

1 1 0379 0-592
0840  0-986 0278 0514
0755  0-951 0165  0-446
0660  0-877 0098  0-412
0566 0-779 0 0-372
0450  0-657
1-0

Va

T

m0.4 T

0 04 08 10
4

Fieure 5. H,({) for strut with ends simply supported about the minor axis.

(b) Evaluation of FH, as a function of { and f; it is independent of the parameters other
than £ in (59). This evaluation is considered in appendix A with results given in table 4.

(¢) Evaluation of «({) as a function of {; it involves all the parameters (59).

(d) Choice of shape for ¢ (appendix B) and the evaluation of #({) which involves all the
parameters (59) except f;/ 7.

(¢) Evaluation of //r, as a function of { from (49) for given values of the parameters (59),
and the determination of its maximum value for 0 < { < {,.

The associated determination of ¢, is considered in appendix B, with the results given in
table 5. It may be noted that {; is a function only of z and / on the assumptions made in
appendix B. The evaluation of (//7,),then follows from (49). Since ¢; has to be determined
in all cases to check which part of the criterion (46) is operative, and since (/r,),, involves
only the one value of { whereas (I/r,),, involves varying {, it is simpler to find (I/r,),, first and
then check whether {; < {, or {; > {,,. This check can then most easily be made by evalu-
ating /[r, for a value { < {; close to {;. Then, referring to figure 4, it is clear that if this new
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value of //r, is greater than (//r,),,, then ; lies on the portion DE of the curve DEF and the
operative criterion is ({/r,),,. Conversely, if the new value of //r, is less than (I/r,),, then {;
lies on the portion EF and the operative criterion is (//7,),,. Itisonly in the second case that
the more extensive calculations of (I/r,),, are strictly necessary. However, though not
finally needed for the criterion, sufficient calculations of (I/r,) for varying { have been
carried out to verify the shape shown for the curve DEF in figure 4.

TABLE 4. VALUEs oF 100/7%FH, FOR A STRUT WITH ENDS SIMPLY SUPPORTED
ABOUT THE MINOR AXIS

\g 0 0-2 04 06 07 08 10
s

0 14-2 11-4 855 5-80 4-59 3-70 3-20
0-2 16-1 12-9 970 6-65 540 4-55 4-10
0-4 18-3 14-6 11-0 7-70 6-45 5-60 5-20
0-6 20-8 16-7 12-6 9-00 7-70 6-90 6-50
0-8 23-8 19-1 14-5 10-6 9-25 845 815
1-0 27-2 21-8 16-6 12- 11-0 10-3 10-0

TABLE 5. VALUES OF €1 FOR A STRUT WITH ENDS SIMPLY SUPPORTED
ABOUT THE MINOR AXIS

" 0 0-1 0-2 04 06 0-8
AN
0 0-773 0-708 0-663 0-620 0-610 0-600

02 0725 0647 0592 0537 0524 0512
04 0656 0554 0483 0414 0397  0-382
06 0547 0402 0290 0181 0157  0-134
08 0272 — — — — —

2:6. Scope of numerical calculations

Loading parameters f and n. Attention has been concentrated on the case § = 0 and the
following combinations of £ and » have been covered

£ = 0(0-2)0-6,
n=0,01, 0'2(0'2)0'8,
ﬂ = 0'871

n =20, J

where the calculations for # = 0-8 have been restricted to #z = 0 in view of the condition (50),
noting that M;/M, = S(z) as given in table 1.
Material and section parameters f7/E and f;/T. Values appropriate to steel I-sections have
been chosen and for easy comparison with Horne’s results (1956) we have taken
E = 13 000 tons/sq.in.,
J1 = 15:25 tons/sq.in.,
T = 24, 40, 100, 400 tons/sq.in.

2-7. Comparison with Horne’s results
The final results obtained for the critical slenderness ratio, such that M = M, is attained
without instability for all smaller slenderness ratios, are listed as unbracketed values in
table 6. It should be noted that in all but one case, namely, 7" = 400, n = 0, f§ = 0, the

I1-2
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value given refers to (I/r,),, with {; > {, in all but this one case. Even in this case, the
quoted value (//r,), = 608 is only slightly greater than the corresponding (//r,),, == 605
which occurs for {; < {,. Hence, over virtually the whole range of the calculations, the
operative criterion is that a plastic hinge does not tend to form away from the top end prior
to M = M, rather than the other criterion of avoiding instability due to the general
decrease in rigidity over the yielded portion with maximum yielding at the top end. In
general, the values are shown to three significant figures to avoid cumulative errors in any
interpolation of the results, but it will be realized that the assumptions in the analysis do
not warrant individual results being regarded as accurate to three figures for practical
application.

TABLE 6. CRITICAL SLENDERNESS RATIO FOR A STRUT WITH ENDS
SIMPLY SUPPORTED ABOUT THE MINOR AXIS

Note. The unbracketed value of the slenderness ratio is that given by the present theory. The first bracketed
value is that given by Horne’s earlier theory (1956). The second bracketed value is that given by Horne’s
later theory (1964) ; the values in bold figures are cases where Horne’s limiting curve is the operative criterion

in the later theory.
T = 24 tons/sq.in. T = 40 tons/sq.in. T = 100 tons/sq.in T = 400

P lfr, lfr, lr, tons/sq.in.
n Is & N s A ) l/?’y
0 0 115 (130) (140) 160 (171) (172) 279 (290) (270) 608
0-1 86-5 (105) (106) 112 (130) (113) 155 (165) (140) 200
0-2 70-1 (87) (82) 86-3 (98) (77) 110 (111) (88) 129
04 51-5 (58) (48) 582 (63) (41) 66-2 (62) (44) 70-8
0-6 34-8 (37) (31) 366 (38) (32) 38:6 (36) (33) 39-6
0-8 16:3 (16) (27) 16-5 (17) (28) 168 (16) (29) 17-0
0-2 0 91-3 (109) (120) 129 (142) (147) 231 (246) (233) 512
0-1 685 (86) ( 87) 91-4 (110) (88) 134 (140) (110) 182
0-2 554 (64) (58) 70-4 (76) (52) 94-4 (87) (60) 115
0-4 41-2 (30) (36) 47-8 (33) (38) 55-9 (34) (41) 61-2
0-6 28-1 (14) (31) 30-0 (16) (32) 319 (15) (33) 33-0
0-8 13-2  (5) (27) 13-4 (5) (28) 136 (5) (29) 13-7
0-4 0 684 (86) (96) 99-5 (120) (118) 185 (204) (195) 426
0-1 49-1 (58) ( 55) 68-0 (76) (61) 107 (100) (72) 155
0-2 394 (20) (44) 52-0 (25) (48) 73-8 (30) (55) 94-2
04 29-2  (0) (36) 34-8 (0) (38) 42-1  (0) (41) 47-1
0-6 196 (0) (31) 213 (0) (32) 22-9  (0) (33) 239
0-8 92 (0) (27) 94 (0) (28) 95  (0) (29) 9-7
0-6 0 42-0 (46) (66) 64-2 (70) (84) 129 (141) (131) 325
0-1 292 (0) (52) 42-3 (0) (61) 72:0  (0) (72) 114
0-2 22-8  (0) (44) 31-3  (0) (48) 47-4  (0) (55) 64-2
0-4 16:5 (0) (36) 202 (0) (38) 25:3 (0) (41) 29:0
0-6 112 (0) (31) 12.2 (0) (32) 13-4 (0) (33) 14-1
0-8 52 (0) (27) 53 (0) (28) 54 (0) (29) 54
0-8 0 149  (0) (66) 24-3  (0) (84) 56:0 (0) (131) 176

Table 6 lists in brackets the corresponding results from Horne’s 1956 and 1964 theories.
These have been read from the curves in Horne 1956, 19645 and are liable to errors of
order +1 in such reading. In ecach case, the first bracketed value relates to Horne’s 1956
theory, and the second bracketed value relates to Horne’s 1964 theory. No values are
shown for 7" = 400 which lies outside the range of Horne’s calculations. The values for
the 1964 theory refer to a yield stress of 16 tons/sq.in. as compared to 15-25 tons/sq.in. for
Horne’s earlier theory and the present theory. However, this 5 %, change of yield stress
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will of itself lead only to a somewhat smaller change in the critical slenderness ratio,
and is unimportant compared to much larger differences between the three sets of
theoretical results in table 6.

It is seen from table 6 that Horne’s earlier theory in comparison with the present theory,
gives somewhat higher values of the critical slenderness ratio for the smaller values of § and
n, and lower slenderness ratios for the larger values of § and n. The difference is most pro-
nounced for f > 0-4, n > 0-4, where Horne’s earlier theory definitely errs on the safe side
by excluding any length of strut. On the other hand, it may be noted that for § = 0 and
T = 40to 100, the results from the two theories are in fair agreement, especially for 7" = 100.
The disagreement between the present theory and Horne’s later theory is in general larger
than that between the present theory and Horne’s earlier theory. In particular, the nature
of the disagreement for the high values of § and # is completely reversed, in that Horne’s
later theory gives larger slenderness ratios than the present theory. In fact, for the majority
of the combinations of £, » and 7 in table 6, the present theory gives values intermediate
between those from Horne’s two theories. The big differences between Horne’s earlier and
later results arise mainly from two additional features in his later theory. First, heintroduces
an additional and overriding criterion which implies that a fully plastic hinge may be
assumed to occur for any combination of f, » and T for sufficiently short struts. This leads
to the complete reversal of the earlier result that plastic-hinge action could not be assumed
for any strut, however short for the higher values of # and #. Secondly, Horne’s later theory
includes allowances for warping rigidity and the Wagner effect, which were neglected in
his earlier theory as they are in the present theory. Surprisingly, the inclusion of warping
rigidity leads in most cases to a decrease in the critical slenderness ratio, which implies
that neglect of warping rigidity is an unsafe assumption. This conclusion seems contrary
to physical intuition and is probably a spurious result arising from the oversafe manner in
which the effect of warping rigidity has been included in Horne’s later theory (see Fox
1965).

On a point of detail, the effect of yielding on the stability of a straight strut is allowed for
by the factors H, and H, in the present analysis and by the factor A in Horne’s analyses.
Values of H, can be derived from table 4 and Horne’s table of F and it is found that H,
decreases as f decreases for a given { and that H,({, f) < H,({) for f < 1. Thus, for the
smaller values of {; in table 5, reference to figure 5 shows that both /) and H, are less than
Horne’s safe value H = 0-7. It must therefore be emphasized that Horne’s lower bound
H = 0-7 is not a general result applying to the actual loading case, but is justified only in
association with his assumption that instability corresponds to yield spreading down to the
centre of the strut in his equivalent uniform-moment problem.

3. EXTENSION OF THE THEORY TO THE CASE OF A STRUT CLAMPED ABOUT
THE MINOR AXIS AT ITS ENDS

The case where the strut is clamped at its ends about the minor axis has also been analysed
on the same general assumptions and method of analysis as for the case of simple support
about the minor axis. We are again concerned with conditions such that M, is attained at
the top end and since we assume that B, = 0 at this end when M = M, it follows that the
effective end condition is one of simple support about the minor axis at this end, even
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though it may have been clamped initially prior to loading. The essential change is there-
fore in the boundary condition for « at the bottom of the strut which leads to consequential
changes in some of the earlier equations which were derived for simple support about the
minor axis. The equations which are changed are given below, where in each case we have
added ¢ to the number of the original equation so that, for example, equation (44) is the
modification of equation (4) when the bottom is clamped instead of simply supported about
the minor axis. The revised end conditions are

U= 1uy="0 (Z:O,Zr:l),]
du  du, B
Al P L (1a)
d2u d2u

By =B =0 (=1, l

and the revised equation (4) is

By (o )+ Pu = — 4 Mf() + (1-2) X, (4a)

where X is the shear force in the direction of the major axis at the top of the strut, with X/
equal to the minor axis clamping moment at the bottom. Equations (4¢) and (5) give

d?u  d%, Pu l z X
[ 1) (dzﬁ_ dzf%)“*‘ 7@~ +Mf(z )dz2 =0, (7a)

which is subject to the end conditions (1a) plus the additional condition

1X — B(

which follows from (44) and (1a).
For the straight strut we put «, = 0, u = u,(z), X = X, to denote the typical eigenfunction
solution governed by the modified equations:

d%u dzuo) (

dz2  dz2) T 0), (60)

d?u, Pu (l z ) X, d%u,
dz dzl:f c1z~7L ]+ (2) d; =0, (8a)
u, = du /dz =0 (z=0),
4, = By(d,dz?) =0 (z=1), (94)
By(d?u,/dz?) = IX, (z=10)
By(d%u,/dz?) + Pu,— (I--2) X, = — ¢, Mf(2). (10a)

The solution of these equations will correspond to a specific eigenrelation of the form (11),
though the forms of I, and u, will, of course, differ in detail from those of the earlier simply
supported case. As before, we consider a set of eigenfunctions corresponding to points on
a radius vector in the (P, M?) plane and the orthogonal relation (12) will again hold. The
solution of (74) is then sought by expansions of the forms (13) and (14) together with the
expansion

X - z (k,—1)a,X, (61)

n=1
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which follows from (13), (14), (60) and (9a). If we then substitute (13), (14) and (61) in
(7a) and satisfy this equation for the typical nth terms, we find

, d%u, k Pu, ({— Z)X:I Mzknf z) d%u,
& Lfz) z) 2 e R R

with associated end conditions (9(1). But equation (154) is the same as (84) except that
k,P|(k,—1) replaces P while k, M?/(k,—1) replaces M2 Hence we again have a solution
of the form (16) with a geometrical interpretation in terms of figure 1 and equation (17).
We then use the approximation (18) that the fundamental mode is dominant and adopt the
safe approximation (19) for the eigenrelation F, = 0; but P, and M, now refer to the strut
clamped about the minor axis at the foot. However, we can still write (19) in the form (20)
leading to (21), with P, M, still given by (22), provided H,, H, now allow both for the effect
of yielding and the effect of clamping the foot about the minor axis. On this definition of
H,, H,, the further analysis for the clamped foot proceeds in the same way as for the simply
supported foot, with equations (22) to (42) applying equally to both cases. The form of
¥ (z,) must however be changed to allow for the foot clamping, so that equations (43) to (45)
require modification; this is discussed in appendix B. The remainder of the earlier main
analysis from equation (46) onwards is applicable in unchanged form to the new foot
condition and the general method of calculating the critical slenderness ratio is also un-
changed. The essential difference is that the relevant numerical values of H,, H,, ¥({) /¥,
and {, are changed, leading of course to changed values of the critical slenderness ratio for
given n, § and T. The method of calculating the modified values of H,, etc. is discussed in
appendices A and B.

=0, (15q)

The final results for the critical slenderness ratio are given in table 7 for the case of the
ends clamped about the minor axis. All the results refer to (//r,),, since the operative
criterion is found to be that a plastic hinge does not tend to form away from the top end
prior to M = M,. No simple general relation has been found between these results and those
of table 6 for the case of simple support about the minor axis. Thus, if we use R to denote the
ratio of the critical slenderness ratio of table 6 to that of table 7 for the same f, n and T, then
the effect of the clamping for a strut of length / could be expressed as a reduction of length
to an equivalent length R/ with simple support about the minor axis. But the value of R in
fact varies appreciably with £ and z from about 0-7 for § = 0, n = 0-8 to nearly unity for
f = 0-6, n = 0-8 and the dependence of R on f, n, T does not appear to be simple. Hence
there is no value in using the concept of an equivalent length to allow for minor-axis
clamping in the present problem.

4. COMPARISON OF THEORY AND EXPERIMENT

Various reports have been published on tests of steel T-section members under combined
axial load and bending moment. Unfortunately, most of these tests cannot be usefully
compared with the present theory, since in some cases the reports do not give all the relevant
information, while in other cases the tests refer to conditions § = +1 which lie outside the
scope of the present theoretical results. Hence, reliable comparisons have been found
possible for only relatively few tests, all of which relate to the case f = 0.

Experiments by Horne, Gilroy, Neile & Wilson (1956) on model-scale struts included
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three tests for # = 0 with the ends simply supported about the minor axis, so that the relevant
theoretical results are those of table 6. The value of T"was approximately 40 tons/sq.in. and
the full plastic moment was attained without instability in all three tests. Table 8 shows
the experimental values of the slenderness ratio and the value of z» at maximum load,

TABLE 7. CRITICAL SLENDERNESS RATIO FOR A STRUT WITH ENDS CLAMPED
ABOUT THE MINOR AXIS

T=24tons] T =40tons] T =100tons/ 7 =400 tons/

| sq.1n. sq.1n. sq.1n. sq.in.
<L s n lr, lfr, lfr, lfr,
- 0 0 128 180 315 690
< 0-1 99-1 131 194 270
P 0-2 82-7 105 142 177
OH 0-4 64-5 754 89-3 987
= 0-6 469 50-2 53-8 559
=0 08 230 23-3 23-8 24-0
T O 0-2 0 105 150 271 611
g 01 795 108 168 244
0-2 64-7 84-7 119 153
32 0-4 49-8 59-3 719 80-6
vs 0-6 352 38-2 41-4 43-2
T = 0-8 17-1 17+4 177 17-9
o695 0-4 0 83-3 122 228 529
D5 0-1 60-4 84-6 137 2017
Oz 0-2 48-8 654 955 126
= 04 365 44-3 54-8 62-4
o= 0-6 26-2 28-6 31-2 327
0-8 12:5 127 130 13-1
06 0 515 79-5 161 413
01 35-2 51-6 90-2 148
0-2 253 353 553 776
0-4 171 21-2 27-3 31-8
0-6 117 13-0 14-3 15:1
0-8 55 56 57 58
0-8 0 165 265 62-9 206

TaABLE 8. COMPARISON OF THEORY AND EXPERIMENT FOR MEMBERS SIMPLY
SUPPORTED ABOUT THE MINOR AXIS (f = 0, 7" = 40 TONs/sQ.IN.)

theoretical critical //r,

Y om \
e A

<« experimental . A ~
—_ specimen Py present  Horne  Horne
< data source no. n lfr, theory (1956) (1964)
> > Horne ef al. (1956) HS 17 027 501 75 83 59
olm HS 17/20 0-10 100-8 112 130 113
e ﬁ HS 18 0 152-1 160 171 172
)= QO Heyman (1957) HS 2 0-17 198 92 108 85
=0 HS 7 0-29 99 72 81 55
= uw

together with theoretical estimates of the critical slenderness ratio given by the present
theory and by Horne’s theories for f = 0, 7" = 40tons/sq.in. These theoretical estimates
are based on the value f; = 15-25tons/sq.in. for the first two theories and the value
J1 = 16tons/sq.in. for Horne’s (1964 0) theory. These differ from the mean experimental
value f; = 15-44 ton/sq.in. from bending tests but the differences are too small to affect the
conclusion from table 8 that the theoretical estimates of critical slenderness ratio are all
greater than the corresponding experimental values. Hence, all three theories are in
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agreement with the experimental result that the full plastic moment was attained without
instability in each of the three tests. Heyman (195%) has reported similar tests using the
same section of model-scale strut. These tests include two cases for § = 0 which are listed
in table 8, together with the theoretical estimates corresponding to the experimental values
of n at maximum load. Differences between experimental values of f; and those used in the
theories are too small to affect the essential conclusion from table 8 that the theoretical
estimates are all appreciably less than the corresponding actual slenderness ratios. Hence,
for these two tests, all three theories predict instability prior to M = M, and this occurred
in both tests.

Summing up, for members simply supported about the minor axis, all three theories are
in agreement with the five tests for which a reliable comparison has been found possible.
Much more data are needed to distinguish between the merits of the different theories.

VanKuren & Galambos (1961) have summarized results of tests on wide-flanged steel
beam columns, including five tests with f = 0 under conditions similar to those assumed in
the present theory for members clamped about the minor axis at each end. The relevant
theoretical results are those of table 7 and the theory is compared with experiment in
table 9. Itisseen that the theory agrees with experiment in four tests but errs on the unsafe
side for the remaining test T 23. The values of 7 in table 9 are based on the experimental
yield stress which varied from 16-7 to 17-8 tons/sq.in. in the five tests, whereas the theoretical
estimates of slenderness ratio are based on f; = 15-25 tons/sq.in. If the experimental values
of the yield stress are used in the theory, the theoretical estimates are all reduced by amounts
of 139, or less and (a) the agreement for T'1, T2 and T 31 is not significantly affected,
(b) the revised theoretical estimate for T 13 is 94 so that the agreement becomes borderline
with a small error on the safe side, and (¢) the disagreement for T 23 is reduced with a revised
theoretical estimate of about 163 for the critical slenderness ratio. The remaining disagree-
ment may be due to the initial imperfection for T 23 being larger than that assumed in the
theory. Thus, if the assumed imperfection were doubled the estimated slenderness ratio for
T 23 would be reduced by about 259, and the disagreement with experiment would be
removed.

TABLE 9. COMPARISON OF THEORY WITH TESTS BY VANKUREN & GALAMBOS (1961)

T critical

(ton/ lfr, Ufr, experimental theoretical
test no. section $q.1n.) n expt theory result prediction
T1 8 WF 31 30 0130 36 106 M, attained M, attained
T13 SWF3L 30 0122 96 106 M, attained M, attained
T2  SWF40 51 0148 36 130 M, attained M, attained
T23 4WFI13 93 0114 140 180  Unstable M, attained

T 31 4 WF 13 93 0-122 194 173 Unstable Unstable

Augusti (1964) has carried out model-scale tests of I-section members for £ = 0 under the
conditions assumed in the theory for a member clamped about the minor axis at its ends.
He conducted two series of tests; in series I, the section had nominal dimensions of overall
depth 2in., flange width %in., flange thickness §in. and web thickness 75in., while in
series H the flange width was % in. with other dimensions unchanged from series I. He tested
several different lengths in each series, and for each length he carried out tests with different

12 VoL. 259. A,
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axial loads so that, for all but one length (H 8), he was able to bracket the critical slenderness
ratio at which the failure changed from excessive major-axis bending with M = M, to
collapse by lateral instability. These tests are thus particularly suitable for checking the
present theory and the comparison is most easily made by comparing the theoretical and
experimental values of n corresponding to a given critical slenderness ratio. The experi-
mental values are not precise; instead, for a given length and section of specimen there is
arange of n between the largest n for which failure was by excessive bending and the smallest
n for which collapse occurred by lateral instability. The value of z for which the slenderness
ratio is critical then lies somewhere in this range.

TaABLE 10. COMPARISON OF THEORY WITH TESTS BY AUGUSTI (1964)

critical n
test span , A \
series (in.) lfr, experimental  theoretical

H 8 61-5 > 064 0-57

16 123 0-48-0-57 0-33

22 169 0-23-0-31 0-22
I 8 133 0-21-0-33 0-29

12 200 0-19-0-29 0-17

16 267 0-075-0-16 0-10

22 367 0-0-051 0-052

The relevant theoretical results are those of table 7 and the comparison is given in
table 10 which shows first the experimental range for the critical value of n and secondly
the theoretical estimate of this value for the experimental slenderness ratio. Only three tests
were carried out for the H specimens of span 8in. and as they all failed by excessive bending
only a lower bound to the critical value of z is given by these experiments. The calculated
values of 7"were 360 tons/sq.in. forseries I and 380 tons/sq.in. for series H, but since estimates
of torsional rigidity cannot be very precise, it was considered sufficient to use the theoretical
results for 7" = 400 tons/sq.in. for the comparison in table 10.

Table 10 shows that the theory errs on the safe side for all three lengths of series H, since
the theoretical estimate in each case lies below the experimental lower bound for the
critical value of n. Secondly, for I8, 112 and 116, the theoretical estimates of critical # lie
within or below the experimental bracket, indicating that the theory either agrees with
experiment within the experimental bracket, or errs on the safe side. But for 122, the
theoretical estimate lies just above the experimental bracket for the critical » and thus errs
on the unsafe side. However, the experimental values of n are based on experimental values
for the yield stress ranging between 17-6 and 21-4 tons/sq.in. as compared to the value
15:25 tons/sq.in. used in the theory. If the experimental values of f; are used in the theory,
the theoretical estimates of critical » in table 10 are reduced variously by 0-01 to 0-03; in
particular, the estimate for 122 is reduced to #n = 0-035 which lies within the experimental
bracket. Hence, the use of the theory for Augusti’s tests leads either to safe estimates or to
estimates lying within the corresponding experimental brackets. The theory appears to be
safer for series H than for series I'; this may be due to the fact that warping rigidity, neglected
in the theory, is relatively more important for the wider flange specimens of series H.

Summing up, for members clamped about the minor axis at each end, the agreement
between theory and experiment is reasonably satisfactory with a tendency for the theory to
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err on the safe side. Exceptionally, for test T 23 of VanKuren & Galambos the theory errs
significantly on the unsafe side; this error is reduced if allowance is made for the actual
yield stress being higher than that assumed in the theory, and the disagreement could be
completely removed if the assumed theoretical magnitude of the initial imperfection were
doubled. The choice of this magnitude is possibly the most uncertain feature of the present
theory and it may well need modification in the light of further experimental data which
are certainly needed before any theory can be verified with confidence.

5. THE VARIATION OF THE CRITICAL SLENDERNESS RATIO WITH
VARYING YIELD STRESS

In the comparison of theory and experiment, the quoted effects of the difference between
/1 and 15-25 tons/sq.in. were obtained from subsidiary calculations using the experimental
values of f; in the theory. Here we note a simpler correction for f; which errs on the safe
side in underestimating the critical slenderness ratio. Thus for given values of z, # and 7,
the values of {, and {; are independent of f; which affects the critical slenderness ratio only
in so far as f; appears explicitly in equations (56) and (57). It is then easy to show from
(49), (56) and (57) that (a) {/r, decreases as f; increases and (b) the product f //r, increases
as f; increases. Hence, for given n, f and 7 it is a safe approximation (i) to use the values
of I[r, quoted for f; = 15-25 tons/sq.in. as applying for all smaller values of f; and (ii) when
/1 > 15-25 tons/sq.in., to correct the tabulated values of //r, on the assumption that the
product f;I/r, is constant.
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ArpeNDIX A. Evavruation or H,({) anp H,(C, §)

A. 1. Exact solution for H,({) for a strut with ends simply supported
about the minor axis

We consider a straight pin-ended elastic strut having a non-uniform flexural rigidity B,
given by (26), and subjected to an axial load P only. The factor #,({) is then defined by
the statement that P = P, H,({) is the lowest critical load for lateral buckling of the strut,
where P, is given by (22) and is the lowest critical load for the case of uniform flexural
rigidity B,. It follows that H, =1 when { = 1.

The governing equation for buckling of the strut is

B,(2) (u/dz) + B, Hy(Q)u — 0 A1)
with end conditions u=0, z=0, (A2)
u=0, z=1» (A3)
Hence, from equations (A1) and (26), we obtain
d%u |,
ap =0 (0<z<0), (Ad)
d?u 1-¢
32—%”2(‘1":2,)”:0 <z <1), (A5)
where, with use of (22), b% = n*H,({),
(22) 1(9) } (A6)
z, =zl

The solution of (A 4) which satisfies (A 2) is
u=A'sinbz, (0<z, <), (A7)

while the solution of (A 5) can be expressed in terms of Bessel functions (Jahnke & Emde,
Tables of functions, p. 147, Dover 1945) and we find

w=BJ(1=2) h26{(1-0) (1—=2)}] ({<z <), (A8)
as the solution which satisfies the end condition (A 3).

The remaining conditions are that the deflexion # and the slope du/dz, are continuous at
z, = {, whence from (A7) and (A 8) we find

A'sin bl — B'J(1=0) J,[2b(1—0)],

A'cosbl =—DB"/(1-{) J0[2b(1~§)],} (A9)
and the elimination of the ratio A'/B’ gives

anpf —— A= 0<<, (A10)

as the eigenrelation governing the critical loads for the strut.

For a given (, the lowest critical load P = F,H,({) = F,b%/n? is given by finding the
smallest non-zero root of (A 10) regarded as an equation in b for given {. For numerical
evaluation, it is simpler to solve (A 10) indirectly by writing

b = 2b(1-0), (A11)
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whence equation (A 10) can be used explicitly to tabulate 4 as a function of 4. We can
then tabulate the corresponding { and H,({) by using

2b¢ 2b 1 b'\ 2 |
=i O =(T50) (A12)

The relevant range of {is 1 > { > 0 and the corresponding range of 4" is 0 < 8’ << 3-8317,
where this last value is the first non-zero positive root of J;(58’) = 0. The direct results of
calculations are shown in table 3 and the corresponding plot of H,({) versus { is shown in
figure 5. From such a plot, values of H; were read off for use in the main calculations.

A.2. Approximate evaluation of Hy({, f) for a strut with ends simply supported
about the minor axis

We consider a straight elastic strut of uniform torsional rigidity €, and non-uniform
minor flexural rigidity B, defined by (26). The relevant end conditions are (1) and (2), and
the strut is subjected to major-axis end moments, M at the top and M at the bottom, but
no axial load. The factor H, is then defined by the statement that M = M, /H, is the lowest
critical value of M for lateral instability of the strut; here, A, is given by (22) and is the
lowest critical moment for the case { =1 of a strut of uniform minor flexural rigidity B,.
It follows that £, = 1 when { = 1 for any value of § when the ends of the strut are simply
supported about the minor axis.

The governing equations for lateral buckling are obtained by putting P = 0, #, = 0 and
C = C, in equations (4) and (5) to give

d2u

B,(z )d 5 = —Mpf(z), (A13)
5% = My T, (A14)

where B, is defined by (26), and from (22) we can write
M? = M§H,((, ) = m*F(B) Hy(&, £) (B, Co[l2). (A 15)

We seek, for given § and ¢, the smallest value of H, for which equations (A 13) and (A 14),
with end conditions (1) and (2), have solutions for z and ¢ which are not identically zero.

Since a simple exact solution of these equations in terms of known functions could not be
found, an energy method was used to obtain approximate values of H,. Now, in the absence
of axial load, the energy equation is

2] (dQu) 2f <d¢) dz"‘—Mff ¢%§d'z, (A16)

which, for a given strut and given £ and {, we can regard as giving the value of M for any
assumed forms of z and ¢ which satisfy the end conditions (1) and (2). Itcan then be shown
by use of the calculus of variations that the smallest value of A for varying forms of u and ¢
corresponds to forms which satisfy the exact equations (A 13) and (A 14). For the approxi-
mate solution we shall restrict the shape of ¢ to a definite assumed type, and the corre-
sponding shape of « will then be taken as the solution of (A 13) and (1) when the assumed
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form of § is inserted in (A 13). Again by use of the calculus of variations it can be shown that
this choice of z gives the least value of M for the assumed shape of ¢. Itisnotin fact necessary
to integrate (A 13) to determine u, since equation (A 16) can be expressed solely in terms
of ¢ by substituting in it the value of the lateral curvature given by (A 13). In this way, the

energy equation becomes
1 ! d¢ 2 B M2 l¢2f2
i‘ifo(’“(&) dzh—gfoj—gz—dz, (A17)

which, by use of (A 15), gives the relation

1/dg\? 1B
| () i =mrp e | Grora (A18)
0 \dz, 0 B,

as the basic equation for determining H, as a function of { and /.

The shape chosen for ¢ is ¢ = z,(1—zp), (A 19)

where m is positive so that ¢ satisfies the end conditions (2). This single-curvature shape
seems reasonable physically for # = 0, and the index m can be used as a parameter varying
with £ and { to allow for some change in the shape of ¢ with different combinations of
f and {. The best estimate for H, for given £ and { will be its lowest value for varying m.
Here we note that on an exact solution for / <1 and { < 1, the larger moment at the top
end z, = 1 and the lower flexural rigidity near this end will both be expected to give a shape
for ¢ which has a maximum value, for varying z,, in the upper half of the strut. If this also
holds for the assumed shape (A 19), itis to be expected that the least H, will occur for m >1
and the numerical calculations confirmed this expectation.

The substitution of (A 19), (26) and (6) in (A 18) gives an equation from which the

quantity X = w2 () Hy(¢, B) (A 20)

can be evaluated numerically for given values of f, and m. Now for integral values
m = 1,2,3, ..., the integrations in (A 18) can be performed analytically in terms of poly-
nomials in { and the resulting numerical evaluation of A is relatively simple. Accordingly,
for a given (£, {), the value of A was calculated for sufficient positive integral values of m to
bracket the minimum value of A for varying m. This minimum value and the associated
value of m were then obtained by interpolation of the values for integral m. These calcula-
tions were carried out for each of the combinations (f,{) covered by f = 0(0-2)1 and
{=0(0-2)0-6,0-7,0-8,1-0. The results for 100/A are given in table 4 and are given in
this form instead of a table of values of H,, since calculation of the critical slenderness ratio
from the main analysis involves H, only in the combination A = #2FH,.

Apart from small errors of less than 19, arising from the interpolations used in the calcu-
lations, the values in table 4 will be in error due to the approximate nature of the energy
method. This error will as usual be in the direction of overestimating the value of A which
is proportional to the square of the critical moment. Since this is an unsafe error, it is
desirable to check that the error is not large. The following indications of the magnitude of
the error have been obtained:

(a) For { = 1, the exact value is H,({) = 1 for all # by definition; accordingly, the values
for { =1 in table 4 were compared with the exact values 100/72F(f), based on Horne’s
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table for 1//F, and indicated an error of less than 29 for all values of £ in the tabulated
range.

(b)) When f = 1, itis easy to show that u satisfies equations which are identical in form to
those for the strut under axial load only, i.e. equations (A 4) and (A 5). Hence it can be
deduced that H,({, 1) = H,({) for all { in the range 0 < { < 1, and noting that F(f) =1
when £ = 1, the values of 100/ in table 4 can be compared with the values of 100/72H,
obtained from the earlier exact solution for H;. This comparison indicates an error increasing
from about 0-59, when { = 0 to about 1-5%, when { = 1.

(¢) Two spot checks for { = 0 were carried out by using the exact equations (A 13),
(A'14) and (26) to obtain a single equation for ¢ and then solving this equation by the
method of solution in power series. These laborious but relatively accurate calculations
showed that for both { = 0, f = 0 and { = 0, / = 0-5, the approximate values of table 4 are
in error by rather less than 19%,.

The above comparisons suggest that for the whole range of the calculations, the error in
the approximate values of table 4 is greatest when { = 1 and that it is then at most about 2 9%,.
This accuracy is considered sufficient for use in the main analysis of the paper.

A. 3. Evaluation of H,({) when the foot of the strut is clamped about the minor axis
The basic equations for determining H, ({) are

B,(z) Q%u/dz?+ P H,({)u = (I—z) X, (A21)

u=du/dz=0, z= O,}

A22

u=0, z=I ( )
where B, is defined by (26). An exact solution involving Bessel functions can easily be
obtained by a similar procedure to that used for the simply supported foot, and again
writing 6% = 72H,, we find that

beosbl—sinbl  J[2b(1—0)] 2
bsinblFcosbl  Jy[2b(1—0)] (23)

is the governing equation for buckling of the strut. This equation can be solved numerically
in a similar way to that described for (A 10) and the final results are given in table 11. The
value H; = 2-045 for { = 1 corresponds to the usual effect of clamping the foot of a uniform
elastic strut. The effect of yielding is represented by the ratio H,({)/H,(1) also shown in
table 11. If these ratios are compared with the values of H, in figure 5 for the same { it is
seen that the ratios in table 11 are smaller, thus indicating a relatively greater effect of
yielding in reducing the critical load when the foot is clamped. Equivalently, it shows
a decreasing beneficial effect from clamping the foot as yielding extends down the strut.
This is to be expected physically, since buckling will depend increasingly on the less rigid
upper portion of the strut as yielding extends down the strut, and the critical load will thus
become less dependent on the foot conditions.

A. 4. Evaluation of Hy(¢,f) for a strut with foot clamped about the minor axis

An approximate solution will be obtained by using an energy approach which differs
only in detail from that used earlier for the strut with simply supported foot. The relevant


http://rsta.royalsocietypublishing.org/

/|
s o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/%
o |

AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

100 E. N. FOX

TaABLE 11. VALUES oF H({) FOR STRUT WITH ENDS CLAMPED ABOUT
THE MINOR AXIS

¢ H,(8) H,(5)[H\(1)
1 2-045 1
0-888 2-025 0-990
0-767 1-858 0-909
0-707 1-711 0-837
0-597 1407 0-688
0-482 1-158 0-566
0-398 1-026 0-502
0-299 0-908 0-444
0-183 0-803 0-393
0-051 0-703 0-344
—0-026 0-651 0-318

energy equation isstill (A 16) and a shape for ¢ will be assumed later, with the corresponding
u then being defined as the solution of the exact equation

B,(2) (d%jdz?) = —Mf(2) +(I—2) &, (A24)

where ¢ is the assumed shape and the relevant end conditions are (A 22). Now, by substi-
tuting in (A 16) the value of d%/dz? given by (A 24), the energy equation becomes

10, (dg\2 ., M2 (g X2t (l—2)?

§fOC° (a—é) dZ~—§—J\O—E;dZ—‘2—“ 0*—B;‘~dz, (A25)
which differs from the earlier equation (A 17) by involving the end shear reaction X. This
must be chosen to satisfy the end restraints (A 22) and if we note that these conditions
imply that ; 2 .
f (1—2) T4, [(l—z) 5‘11‘+u] ~0 (A 26)

0 dZ2 dZ 0

and substitute therein the value of d%:/dz? given by (A 24), we find that

Xf:(_l_l;:)2dz:Mf:(l~—jBi)—gdZ. (A27)

We now use this equation (A 27) to eliminate X from equation (A 25) and if we also use
(A15) to express M in terms of H,, we obtain finally the equation

. __te ta A28
PR EGH L Ll A 28)
where L, Ly, Ly, L, are defined by the integrals
1/dg\2 \
L[, @) 4=
L~ [ Gords,
’ (A 29)
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Equations (A 28) and (A 29), where B, and f are defined by (26) and (6), respectively,
enable an approximate estimate of H, to be obtained if we choose a form for ¢ satisfying the
end conditions ¢ = 0 at z; = 0 and z; = 1.

In the first place, the form (A 19) was used to evaluate H, and as a check on the accuracy
of the approximate method, the results for # = 1 were compared with the exact values of H,,
since the relation H,({,1) = H,({) holds in the exact solution for the clamped foot in the
same way as for the simply supported foot. It was found that when f# = 1, the error ranged
from about 4%, to as much as 109, the maximum error occurring for { = 1. This error is
much larger than the error of 2%, noted earlier for the case of the foot simply supported
about the minor axis. To explain this larger error, we note first that the shape «(z) for the
clamped foot will have as usual a point of inflexion where d?,/dz? = 0. Secondly, equation
(5) with u = u;, ¢ = ¢,, and use of our assumption C = C,, becomes

~ 2 2
G5 = M) s
so that the exact shape for ¢; will also have a point of inflexion at the same section as u;(z).
Thus the single-curvature shape (A 19) will not be as good a representation of the true shape
$,(2) as it was for the strut simply supported about the minor axis. The error is likely to be
largest when f = 1 since then f = 1 and we have

d’, _ M d%,

(A 30)

a2 ~ C, dz? (A31)
and u, = ¢, = 0 at both z = 0 and z = /, so that for this case ¢, = Mu,/C, and it follows that
dg, _ Mdu, _
?ldz—"“C'odz’_O at z=0.

The shape of ¢, is thus exactly similar to that of #; when £ = 1 and may be expected to have
a significant portion near the foot where the curvature is of opposite sign to that in the upper
portion of the strut. On the other hand, when # = 0 we have f(0) = 0and hence d’$,/dz? =0
when z = 0. Thus for £ = 0, the shape ¢,(z) has zero curvature both at the foot and at the
section where d?,/dz? = 0 and it is to be expected that the curvature between these sections
will be small. Hence the single-curvature shape (A 19) may be expected to give appreciably
greater accuracy for H, when f = 0 than when /= 1. Since no simple form for ¢,(z) could
be devised to allow for the preceding variation of reverse curvature with f, it was decided
to evaluate 100/A = 100/7%FH, for both the single curvature shape (A 19) and the double-
curvature shape ¢ = 23—z, (A 32)

The more accurate value is then the larger of the two estimates of 100/A for given (f, {) and
this larger value is quoted in table 12. As expected, the shape (A 19) was more accurate for
§ = 0 and it was also found to be more accurate for f = 0-2, { < 0-8 and the corresponding
values of 100/ in table 12 relate to using (A 19). The remaining values in table 12 are
derived from the shape (A 32) ; in particular, for § = 1 this shape gives values of 100/2 which
are in error by less than 3%, in comparison with the exact value 100/A = 100/m*H, for f = 1.
For each shape, the maximum 100/, giving least H,, was found by using (A 28) and (A 29)
to evaluate A for integral values of m, and then interpolating to find the minimum A for

varying m.

13 VoL. 259. A.
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TaBLE 12. VALUES oF 100/#2FH, FOR STRUT WITH ENDS CLAMPED ABOUT
THE MINOR AXIS

A4 0 0-2 0-4 0-6 0-7 0-8 1-0
AN
0 10-8 878 6-81 4-77 375 2-90 237
0-2 11-5 9-30 7-26 511 4-07 3-22 273
0-4 12-2 991 7-75 549 442 3-62 317
0-6 13-1 107 8-38 6-00 4-87 4-09 3-66
0-8 141 115 9-:09 6-55 538 4-61 4-21
1-0 152 124 9-85 7-16 595 519 4-82

APPENDIX B. ASSUMED SHAPE FOR ¥(z;) AND THE EVALUATION OF (;
B. 1. Strut with ends simply supported about the minor axis

The function §(z,) represents the variation of B, d%/dz? with z, = z/l, in the fundamental
mode of buckling of a straight elastic strut with uniform torsional rigidity C, and non-
uniform flexural rigidity B, defined by equation (26).

An exact determination of ¢ for given values of £ and { would require the solution of
equation (8) with end conditions (9). If these equations are expressed in non-dimensional
form, it is easily seen that the solution depends not only on £ and {, but also on the relative
magnitude of axial and moment loading as expressed by the ratio C,P/M2 However, in
view of other approximations and assumptions in the analysis, great accuracy in the shape
¥ is scarcely warranted and in particular we shall neglect the effect of C,P/M? and base
the shape on the case P = 0. This case has already been considered in connexion with the
evaluation of H, (appendix A) and relatively little further calculation enables the relevant
properties of ¢ to be determined on the basis given below.

When P = 0, it follows from equation (10) that we can take the shape y = ¢, f(z) where
f(z) is of the linear form given by (6) while ¢, is the twisting rotation in the fundamental
mode. We use the form (A 19) for ¢, so that the assumed form for ¥ is

¥(21) = [21+P(1—2))] 2,(1 —27), (B 1)

where the relevant values of m are those giving the least value of H, for given fand {. Hence
for these values of m it is easy from equation (B 1) to calculate the values of #({) and also the
values of ,, as functions of f and {; values of () /#,, can then be obtained for use in evalu-
ating x({) from equation (48). Similarly, values of y({)/m can be plotted as functions of  for
given f, and then equation (45) can be conveniently solved graphically to determine ¢,
which depends on 7 as well as £, since {, depends on both » and £ as shown by equation (58).
The results so obtained for {; are given in table 5.
Values of x({,) can either be obtained from equation (56) or by using

E\Sn) (m\ 1
= 0-001572 (—) (———) B2
#(61) F1=n\yg ) T1=p (B 2)
which follows from (56) and (45), and is rather more accurate than the direct use of (56)
in practice, especially when {,—¢; is small.
As noted earlier in appendix A, the numerical determination of H, and FH, is accurate
to about 2 9, or less and hence the derived values of «({), given by (57) for use in (49), are
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also relatively accurate. The corresponding values of ¢({) and of {; are almost certainly less
accurate since they are likely to be more sensitive to deviations of the assumed ¥(z,) from
the exact solution for ¢(z,), owing in particular to the neglect of the effect of axial force on
the form of . However, values of (/r,),, will be little affected by such deviations since
calculations show that this maximum value occurs for values of { where g is small and hence
this maximum slenderness ratio depends primarily on the function «({). Secondly, so far as
the calculations of (I/r,),, are concerned, the use of an assumed form for § which is appro-
priate to case of zero axial load, i.e. n = 0, will introduce a safety margin for » > 0. Thus,
increasing axial load will tend to make the true shape ¢, of the fundamental mode more
symmetrical, corresponding effectively to a smaller m than that for P = 0. Hence, use of
values of m appropriate to P = 0 will tend to overestimate the negative contribution of
¥'(1) to the inequality (42) derived from (25), and hence lead to a more stringent criterion
than the true criterion for P > 0. Summing up, it is thought that the major source of error
in {; and x({)) is likely to be on the safe side in underestimating (//r,),,, while on the other
hand errors in # lead only to much smaller errors in the value of (//r,),. In any case, it
must be noted that x is subject to an inevitable uncertainty arising from the assumed
magnitude (30) for the initial curvature, and this uncertainty is probably larger than any
other errors in x.
B. 2. Strut with ends clamped about the minor axis
As earlier, we base the shape chosen for #(z,) on the case P = 0, but the relevant equation

is now (A 24) with X given by (A 27). The shape used for ¢ was (A 19) for f = 0, 0-2 and
(A 82) for § = 0-4, 0-6 and 0-8. Thus, using the shape (A 19) we choose

¥(z)) = 21— 20" Hz +A(1—2)} — (1 —2)) Ly/Ly|  (£=0,02), (B 3)

where L,, L, can be obtained from (A 29) by using (26) and (A 19). Hence values of ¢({)
and ¢,, can be calculated for the value of m which gave the minimum A for varying m and
given f, {. It was found that m > 1 > L,/L; in the range of the calculations and using (B 3),

the criterion (42) becomes w0

m+§>§o (8 =10,02), (B 4)

and since the left-hand side of (B4) was found to increase steadily with increasing {, the
criterion may be written in the form

(=4
¥ (8) _ (8=10,02), (B 5)
m——L4/L3+C1 - gO
where the values of m and L,/L, are those for { = {;. The value of x({;) can then be

obtained by using

E\ S(n) m—L4/L3) 1
— 0 2 (&
(&) = 0-00157 (fL)l——n( )i (B 6)
which follows from (56) and (B5) and tends to be more accurate in practice than direct
use of (56). ' -
Similarly, for £ = 0-4, 0-6, 08, by using (A 32) in place of (A 19) we choose

¥(z)) = {z}—2p" Y}z, +f(1—2z,)} — (1—z,)L,/Ls|, f=04,06,0-8, (B17)

13-2
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and find (=4
¢(€ ) o } (ﬂ = 0-4, 0-6, O'S)a (B 8)
mm“f‘gl = {
o E\ S(n) im—1—L,/L;\ 1
#(&) = 0-001572 (ﬁ) l—n( - s) L (B 9)

where ¢,,, m and L,/L, correspond to the value of m which gives the minimum value of
H, for { = {, with use of the shape (A 32). The values of {; are given in table 13.

TABLE 13. VALUES OF {; FOR STRUT CLAMPED ABOUT THE MINOR AXIS

" 0 0-1 0-2 0-4 0-6 0-8
AN
0 0-791 0-730 0-685 0-642 0-633 0-624
0 0-756 0-683 0-628 0-576 0-563 0550
0-4 0-700 0-600 0-525 0-450 0-440 0-420
0-6 0-610 0-465 0-310 0-140 0-100 0-065
0-8 0-307 — — — — —

APPENDIX (. A SAFE APPROXIMATION TO THE EIGENRELATION F; = 0

We consider a straight elastic strut with rigidities B,, C, which are known functions of
the distance z along the strut, independent of the loading. The strut is loaded by an axial
load P and major-axis bending moments M and fM, and the end conditions are those of
full torsional restraint and either simple support or clamping about the minor axis, corre-
sponding to the two cases considered in the main analysis. The succeeding argument applies
equally to either case, the essential points being that no work is done against the end
restraints and that equations (2) and (5) hold in either case. For brevity, we write

l d2u 2
fOBz (a—zé) dz = I,

f:C(g—g)zdz:Iz,

t(du)? dz— 1 (G1)
J (@) 4=
; d%u
[ #2) ez = 1
and the energy equation for the « and ¢ deformations is then
3+ 31, = §PL,—MI,, (C2)

where the left-hand side represents the lateral bending and twisting energy stored in the
strut, while the right-hand side gives the work done by the applied loads for small # and ¢.
Now from equation (5) it follows that

M14=f:¢§£(cg.§) z:—f:C(gg)?dz:——Iz, (C3)

using integration by parts and the end conditions (2).


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FULL PLASTIC MOMENTS IN STRUTS 105
Hence from (C 2) and (C 3) it easily follows that
I, = PI,+ M2IYI, (C4)
which may be written in the form
P M
where P, =1/, } (C.6)
M} =1,1,)13. :

Thus, on an exact solution for the lowest mode where (%, ¢) are equal to the pair of eigen-
functions («,, ¢,), the critical combination (P, M?) for instability satisfies the relation (C 5).
This may be regarded as the eigenrelation F; = 0, though it is not of course explicit, since
(uy, ¢,) are not known and their shapes will in general depend on the ratio PI/M as well as z.
We can however apply Rayleigh’s principle to the relation (C5) in order to obtain a safe
approximation to the eigenrelation. For this purpose, we first regard M as fixed in value
and the relation (C5) as then giving the value of P for any chosen pair («, ¢) which satisfy
the exact end conditions but not necessarily the exact equations of equilibrium. It is then
straightforward, by use of the calculus of variations, to show that stationary values of P
correspond to solutions of the exact equations of equilibrium so that, in particular, the least
possible value of P will correspond to (u,¢) = (u,,¢,) with (P, M?) satisfying the eigen-
relation F; = 0. Hence, for any other choice of admissible (z, ¢), the value of P given by
(C5) for fixed M will be an overestimate of the true lowest critical value of P, which is
a particular example of Rayleigh’s principle. Let u, ¢,, P, M, refer to lowest critical mode
for the general loading combination (P, M?) and let «,,, ¢,,, P,, similarly refer to the special
case when M = 0. Now for M = 0, the relation (C 5) becomes simply P = P,, for the exact
solution (4, #;,) Whereas an approximate estimate P = P, would be obtained by using
(1, 1) in place of (14, §10). Then by Rayleigh’s principle

P =P, (C7)

In an exactly similar manner, we can regard P as fixed and the relation (C5) as then
giving the value of M for any choice of admissible (u,¢) satisfying the end conditions.
Rayleigh’s principle then again follows in the form that the value of M given by (C 5) will
be an overestimate of the true lowest critical value of M for the given P and by using the
general (u;,¢,) as approximate shapes for the special case P = 0 we obtain the inequality,

Ml > M10> (C 8)

where M, is the true critical moment for lateral instability when P = 0.
It follows from (C7) and (C8) that the relation

P M?

S —1 =0 C9
Py, M3, (C9)

is a safe approximation to the exact relation (G 5) since it will always give a lower value of P
for given M, and a lower value of M for given P.
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106 E. N. FOX

It should be noted that the relation (G 9) is exact for P = 0 and for M = 0 and it is linear
in (P, M?); hence it is represented graphically by the chord joining the end points of the
curve F} = 0 in figure 1. The fact that the relation (C9) is a safe approximation means
that the curve F| = 0 lies wholly above the chord in figure 1 for P > 0, M2 > 0. It may
also be noted that an exact solution for the case of a uniform elastic strut has been obtained
by Horne (1954) which indicates that in this case, the relation (G 9) is a close approximation
to the exact relation /] = 0 for /> 0.
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